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Many periodic solutions have internal regions of rapid change- 
internal boundary layers. Shock waves and geophysical fronts are one 
class of examples. A second class is composed of functions which 
decay rapidly away from a central peak or peaks. Spherical harmonics, 
Mathieu eigenfunctions, prolate spheroidal wave functions, and 
geophysical Hough functions may all be locally approximated by 
Hermite functions (in the appropriate parameter range) and decay 
exponentially fast outside a narrow subinterval. Similarly, the large 
amplitude cnoidal waves of the Korteweg-DeVries equation are 
narrow, isolated peaks which are well approximated by the sech*( y) 
form of the solitary wave. In this article, we show that a change-of - 
coordinate is a powerful tool for resolving such internal boundary 
layers. In the first part, we develop a general theory of mappings for the 
spherical harmonic/cnoidal wave class of examples, which decay 
rapidly away towards the edges of the spatial period. The particular map 
y=arc tan(L tan(x)) is a particularly effective choice. Four numerical 
examples show that this map and the Fourier pseudospectral method 
are a good team. In the second part, we generalize the earlier theory to 
describe mappings which asymptote to a constant but non-zero resolu- 
tion at the ends of the periodicity interval. We explain why the “Kepler- 
Burgers” mapping is particularly suitable for shock and fronts. 0 1992 
Academic Press. Inc. 

1. INTRODUCTION 

Many periodic solutions of differential equations have 
internal boundary layers, that is to say, regions of rapid 
change which are small in comparison to the interval of 
periodicity. A common case is that the amplitude of u(y) is 
concentrated in a narrow region about the origin; the 
function is exponentially small everywhere else on 
y E [ -n/2,71/2]. One class of such examples is composed of 
eigensolutions to important wave equations which, in the 
appropriate parameter range, are accurately approximated 
by Hermite functions for small 1 yl (Fig. la). Examples 
include spherical harmonics, Mathieu functions, prolate 
spheroidal wave equations, and Hough functions. Since the 
first three warrant separate chapters in the NBS Handbook 
of Mathematical Functions [ 1 ] and the Hough functions are 
the free modes of oscillation of the earths atmosphere [2], 

it follows that such concentrated-but-periodic solutions are 
very important. 

A second class of examples is composed of periodic 
generalizations of solitary waves (Fig. lb). For the best- 
known case, that of water waves modelled by the 
Korteweg-deVries equation, these generalized solitary 
waves are known as “cnoidal” waves. For small amplitude, 
these are linear cosine waves, but for large amplitude, the 
cnoidal waves are flat over most of the interval except for a 
single narrow peak which is well approximated by the shape 
of the corresponding solitary wave. Thus, nonlinear wave 
theory also requires us to wrestle with the challenge of 
periodic-but-localized solutions. 

Shock waves and fronts form a third class of examples. As 
for the Mathieu eigenfunctions and cnoidal waves, there is 
a region of rapid change centered on the shock. In contrast 
to these previous examples, however, waves with a shock 
usually do not decay steadily away from the region of large 
gradients. Instead, one needs a “high/low” change of coor- 
dinate: one that provides at least coarse resolution over the 
whole interval while simultaneously offering high resolution 
in the neighborhood of the shock. 

In this work, we show that a change of coordinate of the 
form 

y=f(x) (1.1) 

will convert the narrow peaks of u(y) into a function 
u(y[x]) which has smooth, broad crests in x with the 
proper choice of the map function f(x). For the concen- 
trated-and-decaying examples, the particular transforma- 
tion 

y = arc tan(L tan(x)) [“Arc tan/tan map”] (1.2) 

is extremely effective. The constant L ( < 1) is a map 
parameter that can be chosen to tune the resolution. This 
map has the virtues of (i) simplicity and (ii) the explicit 
inverse, 

x = arc tan( [ l/L] tan(y)). (1.3) 
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tion, and other alternatives with periodic mappings, must 
be left to the future. Nevertheless, the Kepler-Burgers 
mapping is worth an explication here. 

Independently of this article and each other, Augenbaum 
[21,22] and Bayliss et al. [23,24] have suggested the 
arc tan/tan mapping in combination with a fractional 
linear transformation to solve non-periodic problems via 
Chebyshev polynomials. (Augenbaum [21] also treats 
periodic problems using a different mapping). These 
papers describe strategies for adaptively choosing the map 
parameter and, if necessary, a phase shift so as to dynami- 
cally optimize time-dependent calculations. Their adaptive 
tactics, not described here, could be equally well applied to 
periodic problems. 

2. GENERAL THEORY OF MAPPING 

When we make the change of coordinate 

Y = f(x), (2.1) 

where y is the original coordinate, the chain rule of elemen- 
tary calculus gives 

following section explains how general periodic mappings 

FIG. 1. Two representative examples of periodic-but-localized 

can be constructed by using the theory of “imbricate series.” 

solutions: (a) the Mathieu function cc,(y) for q = 2500; (b) the bicnoidal 

Section 4 is a case study which uses the general method to 

wave of the fifth-degree KortewegaeVries equation for c = 100,000. 

create a mapping based on the incomplete elliptic integral of 
the first kind. Section 5 shows one of the great virtues of 
the arc tan/tan map: When the differential equation has 
coefficients which are trigonometric polynomials (true 
of the three eigenproblems mentioned above), then a 

First, however, we offer a brief review of how differential 
equations can be transformed from y to x in Section 2. The 

Fourier-Galerkin method in the new coordinate x will give 
a banded matrix, that is to say, a matrix in which only a 
small number of elements in each row is different from zero. 
Finally, Section 6 offers four numerical examples. 

tial or partial differential equation of arbitrary order into 
the corresponding equation in x. For example, consider 

y = arc tan(L tan(x)). (2.3) 

The chain rule gives 

WY = (l/f’(x)) Wx, (2.2) 

where the prime denotes the first derivative of the mapping 
function. By iterating this rule, we can transform a differen- 

In Sections 7 and 8, we turn to shocks and fronts. The 
Kepler-Burgers mapping is also simple and possesses an 
analytic inverse. Our discussion of “high-low” mappings is 
more limited than that of the arc tan/tan mapping because 
shocks pose many difficulties. A complete treatment of 
shocks, comparing domain decomposition, Euler summa- 

dy/dx = (2L)/[ 1 + L2 + (1 - L2) COS(~X)]. (2.4) 

Iterating (2.4) leads to Table I. 
When the solution has concentrated peaks localized every 

rc, the map should have the form 

y=x+ V(x), (2.5) 

where V(x) is periodic with a period of X. To obtain high 
resolution near y = 0 (at the price of lower resolution 
elsewhere), we want 

dy/dx G 1 near y=O (2.6) 

In the next section, we construct periodic maps that satisfy 
this constraint. 
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TABLE I 

Expressions for y-Derivatives in Terms of x-Derivatives 
for the Mapping y = arc tan(L tan[x]) 

u,. = Qu,/@L) 
qr = (Q*u,,~ + 2QZ sin(2x) u,)/(4L2) 

u.,.>, =(Q/~L3,{Q2~,~~+6QZsin(2x)u,, 

+ 4Z[Z + Q cos(2x) - Z cos2(2x)] u,} 

~.wy.c = (Qil6L’)i Q3s>, + 12ZQ2~,,, 

+ [28Z2Q + 16ZQ* cos(2x) - 28Z2Q cos*(2x)] u,, 

+ 8[Z3 sin(2x) - ZQ’ sin(2x) 

+ 4Z2Q cos(2x) sin(2x) - Z3 cos2(2x) sin(2x)] uX} 

u,,~~~.~ = (Q/32~SHQ4~,.~,,, + 20ZQ3 SinPx) ~,,,, 
+ [100ZZQ2 + 40ZQ3 cos(2x) - 100Z2Q2 cos*(2x)] u,, 

+ 4020 sin(2x)[3Z2 - Q* + 6ZQ cos(2x) - 3Z2 cos2(2x)] u,, 

+ [16Z4- 112Z2Q2+ 176Z3Qcos(2x) 

- 16ZQ’ cos(2.u) - 322“ cos2(2x) 

+ 176Z2Q2 cos’(2x) - 176Z3Q cos3(2x) 

+ 16Z4 cos4(2x)] UX} 

Note. y is the original, unmapped coordinate and x is the new computa- 
tional variable. L is a constant < 1, the “map parameter.” The table uses 
the auxiliary parameters Z = L2 - 1 and Q(x; L) = 2 + Z - Z cos(2x) 

3. IMBRICATE SERIES AND PERIODIC 
CHANGES-OF-COORDINATES 

To improve the resolution near x = 0 so that a coarse grid 
in the numerical coordinate x becomes a finely spaced grid 
in the physical coordinate y, we demand that 

dx/dy $1 (3.1) 

which is equivalent to (2.6). Thus, if we specify the mapping 
by setting dx/dy equal to a function P(y), then this function 
must be sharply peaked about the origin. 

If so u(y) is negligibly small at the ends of the interval, 
that lu( &n/2)1 4 1, then the solution is insensitive to 
approximations made at the ends of the interval. Thus, the 
first and simplest option for the periodic interval is to solve 
the problem on an i@zite domain. The error will be the 
order-of-magnitude of the value of u(y) at the ends of the 
spatial period, i.e., O(u( + n/2)). For the Korteweg-deVries 
cnoidal wave, this approach is equivalent to approximating 
the periodic wave by the solitary wave. The author’s 
earlier work on infinite domain computations [3-53 can 
be applied without modification. The infinite interval 
approximation cannot be used when the boundary values 

are larger than the allowed error. In this situation, we must 
not only solve the problem on the interval y E [ -x/2, 7421, 
but we need a mapping that is periodic so that u(y[x]) is 
periodic in x. Otherwise, the Fourier series for u( y [x] ) 
would exhibit Gibbs’ phenomenon and the nth Fourier 
coefficient would be as large as U(u,[ +7c/2]/n2) [19]. 

At the same time, however, the periodic mapping needs to 
imitate the infinite interval mappings. We can reconcile 
these two seemingly incompatible requirements by using the 
theory of “imbricate series” [ 16, 71. We simply define 

dx/dy= f P(y-MC), 
n= -m 

(3.2) 

where P(y) is a good choice for dx/dy for an infinite interval 
change of coordinate. The series (3.2) converges only if P( y) 
decays sufficiently fast as 1 y) + 0, but all good infinite inter- 
val mappings automatically satisfy this condition. The form 
of the series shows that dx/dy is necessarily periodic in y 
with period 7~ for any choice of the “pattern” function P(y). 

The Poisson sum formula [7, 8, 161 shows that all 
Fourier series have an alternative representation in the form 
of an imbricate series. Thus, we lose no generality by 
constructing periodic mappings in the form of (3.2). 

One constraint on P(y) is that it is convenient if the map- 
ping is period-preserving, that is, the periodicity interval is 
rc in both the physical and computational coordinates. This 
requires that the Fourier series for dx/dy must have the con- 
stant a, equal to one. The general theory of imbricate series 
[ 16,7] shows that the Fourier coefficients are proportional 
to the integer values of the Fourier transform of the 
“pattern” function P(y). This gives the simple condition 

J‘ m P(y)dy=z. 
-St (3.3) 

Grosch and Orszag [lo] and Boyd [3] found that for the 
infinite interval, algebraic rather than exponential mappings 
are best for general purposes. Boyd [3, 41 discusses the 
particular choice 

P(y) z 7tL2/2(L2 + y2)3’2 

++x= ij (n/2)(y-m)/(L*+ [y-m]*)“*. (3.4) 
In= --co 

Unfortunately, it is not possible to sum the imbricate series 
(3.4) in closed form nor to analytically invert the sum to 
obtain y(x). For these reasons, we shall discuss different 
choices below. 

It is important to note, however, that lack of an analytical 
sum and inverse are not fatal disqualifications. It is quite 
straightforward to numerically invert (3.4) or any other 
mapping defined by an imbricate series, since all reasonable 
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mappings are one-to-one and monotonic (i.e., dx/dy > 0). 
The basic step is to apply Newton’s method to compute the 
root y of x - g(y) for a given x where g is the integral of 
dx/dy. One begins at x= y = 0 and marches to larger x, 
using the solution at one grid point xi to initialize the 
Newton’s iteration at x, + i . 

To convert differential equations in the physical coor- 
dinate y into differential equations in x, one needsf’(x) and 
its derivatives, the so-called “metric factors,” where y = f(x) 
is the inverse of the function specified by the imbricate series 
in y. Even if only g(y) is known analytically, one can 
evaluate these metric factors via 

f’(x) = ll(&ld-dy(x)l = llg’(yCxl) (3.5) 

IO 
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6- 
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FIG. 2. Graph of dx/dy for the arc tan/tan mapping and L = l/10. 

and similarly for higher derivatives. 
Thus, an imbricate series for x = g(y) and a Newton’s 

iteration for computing the inverse y=f(x)= g-‘(x) are 
sufficient for solving differential equations in the new 
variable x. Nevertheless, closed form expressions for both 
g(y) and f(x) are obviously convenient, and so we shall 
limit the rest of the article to maps where such analytical 
expressions can be found. 

An algebraic map similar to (3.4) is the choice 

P(Y) = MA2 + Y’), (3.6) 

where 

A(L)= -;log[(l -L)/(l +L)]. (3.7) 

Integration gives 

x = arc tan( [ l/L] tan(y)). (3.8) 

We omit the tedious algebra which connects (3.6) to (3.8), 
but note that the logarithmic singularities of (3.8) at x= 
f L4 + nrn, m = any integer, match in strength and location 
those of the imbricate series obtained by integrating (3.2) 
with P(y) given by (3.6): 

x= f arc tan[(y-nm)/A(L)]. (3.9) 
m=--00 

To judge the effectiveness of this mapping, note that 
explicit differentiation and some rearrangement gives 

dx/dy=(2/L)/[l +L-2+(1 -L-2)cos(2y)]. (3.10) 

This shows that the resolution in the numerical coordinate 
x is higher than that in y by a factor of 

The minimum resolution at x = y = f n/2 is 

min Idx/dy) = L. 
in y 

(3.12) 

Figure 2 illustrates dx/dy for a particular value of the map 
parameter L. One can analytically and graphically analyze 
other maps in the same spirit. 

4. THE ELLIPTIC INTEGRAL/PENDULUM MAPPING: 
A CASE STUDY OF THE IMBRICATE SERIES METHOD 

The arc tan/tan mapping is the imbrication of a pattern 
function which is an algebraic function of y. In this section, 
we construct a map from a pattern function which is an 
exponential function of y : 

P(y) = a sech(.sy), (4.1) 

where CY and s are constants. This choice is somewhat 
arbitrary, but this mapping is smooth, simple, and analyti- 
cally summable with an analytical inverse. 

As noted earlier, theory shows that such mappings are 
inferior to algebraic mappings on the infinite interval [ 3,4, 
6, 171 in the asymptotic limit that the number N of spectral 
degrees-of-freedom tend to infinity. However, for moderate 
N such as N z 30, exponential transformations have been 
quite effective in practice [ 18, 20). 

Noting that c1= s to satisfy the normalization condition 
(3.10), it follows that 

dx/dy = f s sech(s[ y - nrr]). (4.2) 
n= -00 

Boyd [9] has shown via Poisson summation that this 
imbricate series is related to the known Fourier series of an 
elliptic function so that 

max Idx/dyl = l/L. 
in Y 

(3.11) 
dx/dy = (2K(s)/7c) dn(2K(s) y/z; s), (4.3) 
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where dn(u; s) is periodic in u with a period of 2K(s)/7c 
where K(s) is the complete elliptic integral of the lirst kind. 
(This is a minor notational change from [9] where the 
elliptic function had a period of unity). Integration gives 
Cl, p. 5861, 

5. BANDED GALERKIN MATRICES AND DIFFERENTIAL 
EQUATIONS WITH POLYNOMIAL COEFFICIENTS 

x = am(2Kyln; s), (4.4) 

where am(u; S) is the “elliptic amplitude” function. We may 
label this the “pendulum map” because (4.4) also describes 
the motion of a simple pendulum making complete revolu- 
tions about the pivot if we identify x as the polar angle 6 and 
y as the time [ 151. Its inverse is 

One vice of pseudospectral methods is that they translate 
differential equations into matrix problems with dense 
matrices in contrast to the sparse, banded matrices created 
by finite difference or finite element discretizations. When 
the coefficients of the differential equation are trigonometric 
polynomials, however, it is possible to obtain a banded 
Fourier matrix by discretizing via Galerkin’s method in 
place of the pseudospectral technique. Orszag and Patera 
[30] have been able to exploit the analogous bit of 
Chebyshev folklore to greatly accelerate a semi-implicit 
hydrodynamics code. 

Y = (7dCW~)I) W; &)I [“elliptic integral map”], 

(4.5) 

where F(x; k) is the incomplete elliptic integral of the first 
kind and k(s) is the usual elliptic modulus. 

Boyd [9] has shown that both K(s) and k(s) may be 
computed via series that converge exponentially fast, 

Unfortunately, in complicated geometries it is necessary 
to map the boundary into the square before applying the 
spectral series. The mapping introduces variable coef- 
ficients, the so-called “metric factors,” into the differential 
equations so that constant coefficient equations in physical 
space become variable coefficient differential equations in 
the computational coordinates. Consequently, the Galerkin 
matrix is as dense as its pseudospectral counterpart unless 
the physical domain is square or rectangular. 

k(s) = { 7cns/(2K[s])} f (- I)” sech(nrcs), (4.6) 
n= --m 

where 

K(s) = (7cs/2) f sech(nxs). (4.7) 
n= -cc 

The arc tan/tan mapping introduces “metric factors,” 
too-they are listed for each order of derivative in Table I. 
In marked contrast to more general transformations, 
however, the arc tan/tan mapping is “polynomial- 
preserving”: the differential equation will have polynomial 
coefficients in x if it had polynomial coefficients in y. 

Most special function software libraries contain routines for 
evaluating F(x, k); in the absence of such, one can easily use 
the Landen transformation [ 11. 

To prove this assertion, first note that differentiating 
the inverse map x = arc tan( [ l/L] tan(y)) gives (3.10). 
Eliminating dx/dy between (3.10) and (2.4) gives 

cos(2y) = (4L’/[2 + (L* - l)( I- cos(2x))l 
Thus, the elliptic integral change-of-coordinates is also 

simple to implement: we merely choose an appropriate s 
and (4.6), (4.7), and library software do the rest. However, 
the arc tan/tan mapping is simpler still. Furthermore, Boyd 
[3] and Grosch and Orszag [lo] argue that mappings 
based on algebraic functions are usually more effective, or at 
least more reliable, than methods based on exponential 
functions (like the elliptic integral transformation) because 
for the latter y(x) varies so rapidly near the ends of the inter- 
val that the solution is strongly singular as a function of the 
new coordinate x. 

-(I,*+ l)}/(L2- I). (5.1) 

Thus, all trigonometric polynomials in y, including the 
metric factors in Table I, can be expressed in terms of 
COS(~X). This in turn implies that the Fourier-Galerkin 
method will yield a banded matrix for differential equations 
whose coefficients are trigonometric polynomials in y. 
Mathieu’s equation, described in Section 6, is such an 
example. 

For these reasons, the numerical examples will be limited In practice, only very simple and special differential 
to the arc tan/tan mapping. Nonetheless, the construction equations have polynomial coefficients. For this reason, we 
of the elliptic integral map shows that it is easy to create will refer the reader to the author’s monograph [17] for a 
periodic mappings to order for whatever special application detailed description of Galerkin’s method. Exploiting 
is at hand. For the rotating pendulum [15], the elliptic polynomial coefficients is a trick rather than a general 
integral map makes the phase angle 9 a linear function of the method. But sometimes it is a useful trick, and the fact that 
transformed time. Thus, this change of coordinate would the arc tan/tan mapping is “polynomial-preserving” is 
probably be useful for a perturbed pendulum, too. therefore sometimes a virtue. 
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6. NUMERICAL EXAMPLES FOR THE 
ARC TAN/TAN MAPPING 

Figure 3 illustrates the change-of-coordinate y = 
arc tan[L tan(x)] for three different values of L. Since 
y( + z/2) = + 7c/2, high resolution for small 1 yl is inevitably 
counterbalanced by poorer resolution for larger ( yl. The 
boundary between these two regions is the point where 
dyldx = 1, which is 

y,=+arccos[(l-L)/(l+L)] (exact}. (6.1) 

For the appropriate range of L, we can simplify (6.1) to the 
following: 

y, Zrcn/4-(1 -L)!4 Lz 1 (6.2) 

y1 rz L1’= L< 1. (6.3) 

These expressions for y,(L) are important because, to 
optimize the mapping, we need to tailor the width of the 
region of high resolution to the width of the solution. 

Optimizing L is both difficult and easy. Boyd [ 31 applied 
the method of steepest descent to optimize the map 
parameter L for an algebraic change of variable on an 
unbounded interval, but the corresponding analysis for the 
periodic change-of-coordinate is considerably more com- 
plex, and no simple result was obtained. Thus, a rigorous 
theory for optimum L is hard. 

Augenbaum [21,22] and Bayliss et al. [23, 241 describe 
error-minimizing algorithms for choosing L. These are very 
effective in varying the mapping during a time-integration 
to resolve narrow, time-evolving features; we refer the 
reader to these articles for details and illustrations. 

Because of the relative insensitivity of the error to L, 
however, we will adopt the more pedestrian philosophy that 
a good guess, combined with some simple numerical 
experiments, is sufficient to optimize the mapping. One set 
of simple experiments is to compute the expansion, for 
different L, of a known function which mimics the expected 
solution, as we shall illustrate with our first two examples 
below. Another set of experiments is to solve a one- 
dimensional shock problem with different L and a given 
viscosity as a prelude to computing a two-dimensional 
shock with the same viscosity (and therefore, a shock zone 
of approximately the same width). 

The first two cases are the Fourier expansions of known 
functions constructed by choosing the pattern function P(y) 
in the imbricate series 

td(yj= f P(y-nn). (6.4) 

EXAMPLE ONE (on elliptic function; Dnoidal wave of NLS 
equation). 

P(y) = sech( 1Oy). (6.5) 

Fortunately, however, the numerical examples below 
demonstrate that the accuracy is not very sensitive to the EXAMPLE Two (Theta functions; periodic solutions to the 

precise choice of L. (Accuracy will vary smoothly with L 
heat equation; asymptotic spherical, spheroidal, & Mathieu 

and thus have a minimum at optimum L. Thus, a graph of eigenfunctions). 

accuracy versus L is flat in the neighborhood of optimum 
L.) Thus, the easy part of choosing L is that an educated P(y) c exp( - 80~‘). (6.6) 

guess of the right order-of-magnitude will be quite satis- 
factory. The numerical examples provide concrete guidance Boyd [9] shows that all the Jacobian elliptic functions 

in choosing L for specific problems. 
have imbricate series with hyperbolic pattern functions. In 
turn, the elliptic functions (or combinations and powers of 
elliptic functions) furnish exact periodic solutions to many 
nonlinear wave equations including the Korteweg-deVries 

14- 

1.2 - 
IO- 

)r 08- 
0.6 - 

0 

equation (for which P(y) is proportional to sech2(j3y) for 
some 8) and the nonlinear Schroedinger (NLS) equation, 
whose periodic waves are described by the dn function of 
(6.5) and Section 4. 

The Jacobian theta functions, which furnish periodic 
solutions to the heat equation, all have imbricate series with 
a Gaussian as the pattern function [14]. In addition, 
Mathieu’s equation, Laplace’s equation on the sphere, and 
the spheroidal wave equation all have eigenfunctions which 
can be approximated by imbricate series using Hermite 
functions as the pattern function. 

Thus, these two cases, one decaying as an exponential 
FIG. 3. The function y = arc tan[L tan(x)] for three different values with linear argument, the other as a Gaussian, are repre- 

of 15: L = 1 (no mapping; solid line), L = f (dotted), and L = 4 (dashed). sentative of many important applications of periodic-but- 
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Map Parameter L 

FIG. 4. Natural logarithm of the error bound as a function of the map 
parameter L and the truncation of the Fourier series, A$ for Example One: 
pattern function = sech( 10,~). (The error bound is the sum of absolute 
values of all the neglected coefficients, which is an upper limit on the L, 
error. ) 

localized solutions in engineering and physics. Each 
function was expanded as an ordinary Fourier series in x 
for various L-a cosine series, since both examples are 
symmetric about the origin. Since the cosine functions are 
bounded in absolute value by 1, the error in a truncated 
series can be rigorously bounded by taking the sum of the 
absolute values of all the neglected terms. Figures 4 and 5 
illustrate the results for examples one and two, respectively, 
for different truncations N, where (N + 1) is the total 
number of terms kept in the approximation. 

The mapping is a dramatic success: in both cases, using 
the best value of L more than triples the number of decimal 
points of accuracy for all N. Furthermore, this improvement 
is not very sensitive to L: using L, which is 10 times smaller 
than the best value of L is still at least as good or better than 
using no change-of-coordinate at all, i.e., taking L = 1. 

For both examples, it happens (by coincidence) that 
L = $ is a good choice (though not necessarily the best) for 
N between 5 and 20. Equation (6.1) shows that the high 

-0 
-2 
-4 

- -6 
F -8 
s -10 

n 

8 
-12 

k -14 
2 -16 
0 -18 

4 -20 
-22 
-24 

ON=5 
QN=IO 
IN=20 

I 05 025 02 015 01 005 002i 

Map Parameter L 

FIG. 5. Same as Fig. 4 except for Example Two: pattern func- 
tion = exp( -80~‘). 

resolution region is bounded by 1 y, ( = 0.46 for this choice of 
map parameter. Since sech( lOy,) = 0.02 and exp( - 80~:) = 
4.5E - 8, it is obvious that for these two examples, the high 
resolution region must extend well beyond the “half-width” 
points where the pattern function has decayed to half its 
value at the origin. 

However, there is no simple rule relating y, to the width 
of u(y) such as “choose y,(L) to be well outside the “half- 
width” points. For the Mathieu eigenfunction cc,(y) 
(below), the half-width of the function is almost exactly 
equal to 1r/4 (see Fig. la). The arc tan/tan mapping is still 
invaluable even though for this case (and all choices of L), 
the region of high resolution lies within the half-width 
points. 

The theta function is actually a very severe test because 

f exp(-dy-W*) 
m=-cc 

=(np)-“* 1+ CC n;, ew( -n’lp) ~00~) (6.7) 

so that the Fourier coefficients decrease as a Gaussian 
in n. This is extraordinarily fast convergence; most entire 
functions have Fourier series that decrease as 
O(exp(-sn log[n])) for some constant s while those of 
singular functions decrease no faster than O(exp( - tn)) for 
some constant t [3], The fact that the mapping still 
improves upon this unusually fast-converging Fourier series 
is remarkable. 

This example also illustrates one minor vice of this 
change-of-coordinate: the mapping has singularities in the 
complex plane. This in turn implies that although B(y) is 
entire, B[y(x)] has branch points in the complex x-plane 
which replace the Gaussian-in-n convergence of the 
unmapped series (6.7) by slower geometric convergence 
in which the coefficients decrease as exponentials with 
arguments linear (as opposed to quadratic) in n. It follows 
that when N% 1, the optimum choice of L is one, that is, 
no change-of-coordinate at all. Figure 5 reflects this by 
showing that the best value of the map parameter increases 
from 0.2 for IV= 5 to 0.5 for N= 20; Loptimum + 1 (no map) 
in the limit N-t co. 

One possible remedy is to truncate the Fourier series 

y = arc tan [ L tan(x)] 

=x + f (- 1)” [r”/n] sin(2nx), (6.8) 

where 

r-(1-L)/(l+L) (6.9) 
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after a finite number of terms, thereby generating a change- 
of-coordinate which is a trigonometric polynomial, free 
from singularities, instead of a transcendental function 
which has logarithmic branch points. However, we have not 
tested this “truncated” mapping in detail because Fig. 5 also 
shows that with N= 20, the arc tan/tan map with L = 4 still 
more than triples the logarithm of the error to yield nine 
decimal places of accuracy. At least for this example, the 
branch points of the map are only of academic interest. 

EXAMPLE THREE (Mathieu’s equation). The problem is to 
find u(y) and d which satisfy 

2.4, + [A + 2q COS(2Y)l u = 0, 

subject to the periodic boundary conditions 

(6.10) 

4Y)=ev+2n), (6.11) 

where A is the eigenvalue and q is a constant. When 141 B n2, 
where n is the mode number, the Mathieu functions can be 
approximated by Hermite functions Ic/Jy). To see this, 
merely expand the cos(2y) in (6.10) in a power series to 
obtain 

uyy + [(A + 2q) - 4qy2] 24 = 0 (6.12) 

which is the parabolic cylinder equation. The eigensolutions 
are then approximately 

U,(Y) N vL(2”2q1’4Y)~ IYI 4 1; q $ n2, (6.13) 

where e,(y) is the n th Hermite function. Note that we have 
reversed the sign of q in (6.10) from what is conventional (in 
[ 11, for instance) so that the Hermite functions are centered 
on the origin rather than n/2; this sign reversal merely shifts 
the eigenfunction without altering its shape or the eigen- 
value 1. 

The approximation (6.13) fails at the edges of the spatial 
period, but this non-uniformity can be removed by 
generalizing (6.13) to an imbricate series with the Hermite 
function as the pattern function. The eigenfunctions of 
Mathieu’s equation fall into four separate classes. Two are 
periodic with period X. The other two classes of eigenfunc- 
tions are periodic with period 27t and may be represented as 
“alternating-imbricate” series of the form 

u(y)= f (-l)“P(y--mn), (6.14) 
m= -cc 

where the pattern function is again a Hermite function.’ For 

’ It is also possible to represent these eigenfunctions of period 2x in terms 
of a non-alternating imbricate series with the copies of the pattern function 
spaced 2s apart, but the pattern function is more complicated than (6.13), 
so this series is not as efficient as (6.14). 

the mapping, however, the difference between (6.14) and 
(6.4) is meaningless: the important point is that for 1q( b n*, 
u,(y) has large peaks or troughs centered on y = m7t where 
m is an integer, and the eigenfunction has small amplitude 
over large subintervals between these peaks. The arc tan/tan 
mapping can therefore be applied to all Mathieu eigenfunc- 
tions, regardless of whether their period is 7c or 271. 

Figure 6 shows the results of applying the pseudo- 
spectral method to the Mathieu functions of the class which 
can be expanded as a sum of the even cosines: ( 1, cos(2y), 
cos(4y), . . . >. 

We assume 
Nfl 

u(y)= c %4”(Y), (6.15) 
n=l 

where 

dn+ l(Y) = cosFwYl~? n=O, l,..., N. (6.16) 

This reduced basis-one-fourth of a general Fourier 
series-shows off another advantage of the arc tan/tan 
change-of-coordinate: the mapping preserves the double 
parity properties of the differential equation which allow 
this “quarter-wave” reduced basis set [ 17, Chap. 71. 

To apply the pseudospectral method [4, 5, 73, we 
demand that the truncated series should exactly satisfy the 
differential equation at the “interpolation” or “collocation” 
points yi = y(x,), where 

xi= -71(2i- 1)/(4N+4), i= 1 , . . . . N+ 1. (6.17) 

Note that the grid points are evenly spaced in the computa- 
tional coordinate x, but the yi(xi) are dense around y = 0. 
The collocation procedure gives the matrix eigenvalue 
problem 

Aa = ABa, (6.18) 

where a is the column vector whose elements are the coef- 
ficients in (6.12) 

A,r dj,yy(Yi) + 2q cos(2Yi) dj(Yi) 

i,j=l , . . . . N + 1 (6.19a) 

B, E -#ji(Yi) 

i,i=l , . . . . N+ 1, (6.19b) 

where the derivatives of the basis functions are evaluated via 
Table I, 

#j,yy(YCXI)= {Q~C-k2COS(~X)I +2Q(L2-1) 

x sin(2x)[ -k sin(kx)]}/(4L2), (6.20) 

where 

Q(x; L) = 2 + (L2 - l)[l - cos(2x)], kz2j-2, 
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where the [ ] enclose the first and second x-derivatives of 
dj(y[x]) = cos(kx). Note that the change-of-coordinate 
can be buried in two subroutines: one to calculate the yi 
and another which calculates the derivatives via (6.20). 
The main program can be written entirely in the physical 
coordinate y. 

the mapping would allow higher accuracy. Fig. 6 confirms 
this. 

EXAMPLE FOUR (Bicnoidal waves of the fifth-degree 
KortewegdeVries (FKDV) equation). These nonlinear 
waves are the two-peaked, periodic solutions to 

The QZ algorithm, available in software libraries such as 
the IMSL collection, will calculate the (N+ 1) eigenvalues 
of (6.15) with no user input beyond the matrices A and B, 
but only the lowest few matrix eigenvalues will be good 
approximations to those of the differential equation because 
the higher eigenmodes oscillate too rapidly to be resolved 
by (N + 1) basis functions. 

- uy.“yy.” + (u - cl q’ = 0, (6.21) 

Parenthetically, note that if we applied Galerkin’s 
method, we obtain an eigenvalue problem with a banded 
matrix. Unfortunately the QZ algorithm cannot exploit 
such bandedness, so we used the simpler and more general 
pseudospectral discretization instead. (There are ways to 
exploit bandedness in computing eigenvalues, but it would 
take us too far afield to discuss them here.) 

where c is the phase speed and y = x - ct where x is the spa- 
tial coordinate. As explained in Boyd [7], solutions exist for 
all c > - 16.84. To compute a solution, we begin with a first 
guess for a given c and then apply the Newton-Kantorovich 
iteration, which reduces (6.21) to the linear equation 

-@+;;’ + (U(m) - c) q+ 1) + q$p+ 1) = U(m)Uy), 

(6.22) 

Figure 6 shows the number of accurate eigenvalues for 
a typical case. The change-of-coordinates is clearly a 
godsend: five good eigenvalues when L = 0.25 versus only 
one in the absence of the mapping. 

At the same time, however, Fig. la shows that the second 
mode of this class has an amplitude at 1 y[ = 7r/4 which is half 
that at the origin. Imposing any mapping, even for L close 
to 1, will lower the resolution for 1 yl > 7r/4, where the eigen- 
function has significant amplitude. One possible empirical 
rule for choosing the map parameter L would to be pick it 
so as to place y, defined by (6.1) outside the region where 
the mode is large, but since y, d 7c/4 for all L d 1, such a rule 
clearly fails here. 

where m denotes the iteration level. Because each iteration 
is linear, we can apply the pseudospectral method to (6.22) 
with only a couple of modifications from the Mathieu case. 
First, the matrix problem is inhomogeneous; the column 
vector on the right-hand side (RHS) of the matrix equation 
is the RHS of (6.22), evaluated at the interpolation points. 
Second, the solution of (6.22) is not unique. As explained in 
[7], one may remove the non-uniqueness, which is caused 
by symmetries of the differential equation, by using a 
restricted basis set. Since our interest is in narrow, high 
amplitude solutions with c $1, we choose to calculate in 
what is called the “soliton convention” [7] by using 

h(Y) = (cosC&Yl -cos(nn)), n = 1, . . . . N, (6.23) 

Nonetheless, Fig. la shows that the mode does occupy 
only half of the interval y E [-n/2, 7c/2]; common sense 
would suggest that widening the graph of the function via 

so that c$,( f 7c/2) = 0 for all n. 

In the limit c + co, the bicnoidal wave tends to the bion, 
the double-peaked soliton on y E [ - 00, co], which is a 
bound state of two single-crested solitons. Using the bion as 
computed in [7] as the pattern function for an imbricate 
series gave the necessary first guess for the iteration, (6.22). 

Map Parameter L 

FIG. 6. The number of accurate eigenvalues for Mathieu’s equation 
with 4 = 2500, N = 10, and various map parameters L. A “good” eigenvalue 
was arbitrarily defined to be one with an absolute error less than 30, where 
the average separation between eigenvalues is about 400 for this value of 4. 

Figure lb displays u(y) for the bicnoidal wave for 
c = 100,000. Table II shows how maximum absolute error 
on y E [ -rc/2,71/2] varies as a function of the map 
parameter L when the arc tan/tan mapping is used with 
N= 16. Like the Mathieu problem, the best choice of the 
mapping parameter triples the number of correct digits for 
fixed N. It is also striking that any choice of map parameter 
L > 0.15 gives some improvement over no map (L = 1). This 
reiterates a theme made by the previous examples, too: the 
accuracy is not too sensitive to the precise value of L, and 
the mapping is useful even when L must be guessed. 

Figure 7 shows how the accuracy varies with N for two 
fixed values of L. The change-of-coordinates with L = 4 



TABLE II 7. “HI-LOW” CHANGES-OF-COORDINATES 

Maximum Absolute Error (L, Error) as a Function of Map 
parameter L for the Bicnoidal Wave of the FKDV Equation for The examples above all belong to the class of problems 

c = 100,000 and N = 16 Basis Functions that originally motivated this work: solutions that decay 
exponentially fast away from a narrow peak. For such 

L II Error II m Lwd IlErrorll ,I problems, it is entirely proper that dx/dy should mimic u(y) 
by decaying rapidly to small values at the endpoints, 

1.00 0.037 - 1.43 
0.75 o.ooo735 -3.13 

x = f 742. Poor resolution near the endpoints is acceptable 

0.50 O.oOOOO224 -5.65 
because the amplitude of the solution is very small there. 

0.30 o.ooo147 -3.83 
Changes-of-coordinate which are applied to shocks and 

0.20 0.00244 -2.61 fronts must be different because the shock wave or 
0.15 0.011 -1.97 geophysical flow does not decay away from the region of 
0.10 0.09 1 -1.04 maximum gradient. With shocks, we need to resolve an 

0( 1) flow near the endpoints instead of the O(E) amplitude 
of the examples in Section 6. 

roughly doubles the number of correct decimals for all It follows that we need to invent “hi-low” maps which 
values of N. give a specified high resolution around the shock or front 

As is characteristic of spectral methods-see similar while simultaneously retaining a lower bound on dx/dy 

graphs in Gottlieb and Orszag [ 111, for example-there is throughout the interval. One simple tactic for defining such 
little or no accuracy until some minimum N is reached and maps is to modify the “pattern function” P(y) in (3.2) so 
then the error decreases exponentially fast with N. The that it converges asymptotically to a constant on the 
series coefficients exhibit precisely the same behavior. Since interval y E [ - 742,423 and then decays sufficiently fast 
the basis functions are bounded in absolute value by 1, one outside this interval as 1 yl -+ cc so that the imbricate series 
can compare numerical solutions for different L--even in converges. 
the absence of a known exact solution-merely by printing A simpler alternative is to modify (3.2) to 
out the coefficients to see which L leads to the fastest 
decrease. Thus, to map the parameter space of the bicnoidal 
wave, one would make several calculations with a different 

dx/dy=A+ f P(y-mn;L), (7.1) 
??I= -r 

L but for a single value of c as done here. Then, once a good 
choice of map parameter is known, one can vary the where A< 1 is a constant. If P( y; L) decays monotonically 
parameter c and make many calculations with fixed L at a away from y = 0 and if P( + 7r/2) < A, then 
modest cost. Note that if the matrix problem is solved by 
Gaussian elimination, halving the basis set saves a factor of max jdx/dyI = 1” + P(O), min Idx/dyl = A, (7.2) 
8 in computer time! 

-10: 

-IL?.- 
-l4.- 

-16- 

if P( f 42) is small enough to be neglected. Thus, we can use 
the extra parameter L to control the minimum resolution, 
which is ,? itself. The pattern function P( y; L) will have an 
internal map parameter L which can be used to control 
resolution around the front, as in the earlier examples. 

In this spirit, Courtier and Geleyn [25] have applied a 
two-dimensional mapping of the sphere to a computational 
sphere. Their map resolves both a small scale (“mesoscale”) 
system and also the larger scale (“synoptic”) weather 
systems that surround it. 

8. THE KEPLER-BURGERS MAPPING FOR 
- 10. 

0 5 IO 15 20 25 30 SHOCKS AND FRONTS 

N 
The “hi-low” mapping we shall dub the “Kepler-Burgers” 

FIG. 7. The natural logarithm of the maximum of ]a(~)-u,,,(y)1 on change-of-coordinate is defined by 
YE [-n/2, n/2] (i.e., logarithm of the L, error) is plotted versus the 
pseudospectral truncation N for the bicnoidal wave of the FKDV equation 
for c = 100,000. The upper curve (squares) is for no mapping (equivalently, y = x - (t/2) sin( 2x) (“Kepler-Burgers” mapping). 
L = 1); the lower graph (triangles) is for L = 1. (8.1) 
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The motive for (8.1) is that many shocks and frontogenesis 
problems can be reduced to the inviscid Burgers’ equation, 
also known as the “one-dimensional advection” equation, 

24, + uu~v = 0. (8.2) 

Its exact solution for the initial condition 

u( y, 2 = 0) = - sin(2y)/2 (8.3) 
-----. 

is given by 0 I t c 
0 0.5 IO I.! 

Y 
u(y, t)= -sin[2x(y; t)]/2, (8.4) 

where x( y ; t) is the solution of (8.1). This algebraic equation 
(8.1) is known in celestial mechanics as the “Kepler” 
equation, so we have dubbed the mapping (8.1) as the 
“Kepler-Burgers” transformation. 

Thus, for Burgers’ equation with the sine wave initial 
condition, the Kepler-Burgers mapping is a kind of ulti- 
mate transformation in the sense that the Fourier solution 
in the computational coordinate x consists of a single term 
for all t < 1. For t 3 1, the map is triple-valued; physically, 
the wave “breaks” and u(y; t) has a jump discontinuity. No 
mapping can handle the post-breaking solution in the limit 
of zero viscosity. 

However, if we generalize (8.2) by adding a dissipation 
term, frontogenesis will proceed until a narrow frontal zone 
has developed and then stop. The Kepler-Burgers mapping 
can resolve a slightly viscous, narrow shock zone if the 
parameter t is sufficiently close to 1. 

In this section, we implicity assume that the coordinate y 
is measured in a frame of reference travelling with the wave 
so that the shock or front is stationary in this reference 
frame. As noted earlier, Augenbaum [21, 223 and Bayliss 
et al. [23, 241 have developed adaptive procedures for 
tracking the shock and adding a “phase shift” to the change- 
of-coordinates so that the region of high resolution is 
always centered on the shock, but we shall refer the reader 
to those articles for the details. 

Figure 8 compares dx/dy for this map with the arc tan/tan 
mapping. The map parameters are chosen so that both give 
equal resolution at the origin, but the Kepler-Burgers trans- 
formation has much higher resolution at the ends of the 
interval than the arc tan/tan mapping-roughly a factor of 
three for t = 0.8. The price for this higher resolution at 
y = &n/2 is that the region of high resolution (where 
dx/dy > 1) is much narrower for the Kepler-Burgers map- 
ping than for the arc tan/tan transformation. 

In the vicinity of the origin, Taylor expansion of the sine 
in (8.1) gives 

yZ(l-t)x-(2/3)tx3 Ix1 < 1. (8.5) Because of its simplicity, however, the Kepler-Burgers map 
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FIG. 8. Graph of dx/dy for two different types of mappings. Solid: 
Kepler-Burgers mapping for I = 0.8. Dashed: arc tan/tan mapping with 
L = 0.2. Both mappings have the same resolution (five times that of the 
original coordinate y) at the origin. The minimum resolution is dx/dy = 
l/( 1 + t) = 0.5777 for the Kepler-Burgers mapping and min(dx/dy) = 
L = 0.2 for the arc tan/tan transformation. 

This cubic-plus-linear map was introduced for Chebyshev 
spectral methods by Boyd [26] and has since been 
rediscovered by Lacroix et al. [27] and Guillard and Peyret 
[28]. All these authors find that it resolves narrow frontal 
zones very well. 

The Kepler equation has an analytical, infinite series 
solution which has been independently rediscovered at least 
eight times: 

x = y - 2 f [J,(nt)/(nt)] sin(2ny) (8.6) 
?I=1 

(Benton and Platzman [29]). 
The Kepler-Burgers map could be fitted into the 

imbricate-plus-constant formalism of the previous section 
for some transcendental pattern function or other. 
However, the analytical form of pattern function is not 
known. 

The Kepler-Burgers mapping can be generalized to 
define a whole family of transformations. If Q(y) is any 
smooth period function, then Burgers’ equation has the 
exact solution 

U(Y? t) = wcy; tlh (8.7) 

where x[ y; t] is the solution of the algebraic equation 

y = x + tQ(x). (8.8) 
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TABLE III 

Transformation of Derivatives for the Kepler-Burgers Map 
y = x - (t/2) sin(2x) 

uy = Cl/fi(X)l ur 

uyy= c~/fi~~~‘l~fi~,,-f~~,~ 

Note. f, denotes the nth derivative of the mapping function y = f(x), 
where explicitly f, = 1 - t cos(2x), fz = 2t sin(2x), fX = 4t cos(2x), f4 = 
-8r sin(2x), and fs = -16t sin(2x). Then the y-derivatives can be 
expressed in terms of x-derivatives as above. 

is likely to be the most useful of the “Burgers transforma- 
tions.” 

Table III lists the change-of-coordinate rules for the first 
live derivatives of a function. We omit numerical examples 
because the shock-from-a-sine-wave solution to Burgers’ 
equation, which we used to motivate the mapping, is also an 
explicit illustration of the mapping’s effectiveness. 

9. SUMMARY 

By using the method of imbricate series, we have given a 
general method of creating a change-of-coordinate to 
efficiently solve differential equations with periodic-but- 
localized solutions. For most purposes, the arc tan/tan 
mapping is sufftcient: both the map and its inverse can be 
evaluated in terms of elementary functions, the distortion is 
algebraic rather than exponential as is shown to be desirable 
in [lo], and y-derivatives can be expressed as sums of 
x-derivatives via Table I. 

It has not been possible to offer simple rules to optimize 
the map parameter L; steepest descent analysis similar to 
Boyd [3] did not give useful results, and empirical rules 
based on where the resolution is raised or lowered by the 
mapping do not help much either. The four examples show, 
however, that rather modest values of L-typically 0.5 to 
0.25-are best in most situations where the arc tan/tan 
mapping is practical. When the solution u(y) fills up such a 
large portion of the interval y E [ - 742, n/2] that a larger L 
such as 0.7 is optimum, the improvement over no map 
(L = 1) will be so small that the change-of-coordinates is 
probably not worth the bother. On the other hand, when 
u(y) is very, very narrowly peaked about the origin and 
decays exponentially away from y = 0, the overlap between 
neighboring peaks may be so small that one can ignore the 
periodicity and solve the problem on y E [ - 00, co]. It is 
only for solutions that are narrow in comparison to the 

interval but not toa narrow that the arc tan/tan mapping is 
useful. 

Nonetheless, the examples show that such periodic-but- 
localized solutions are ubiquitious in solitary/cnoidal wave 
theory and in problems in spherical or ellipsoidal geometry. 
The arc tan/tan mapping and its generalization are a power- 
ful way to improve the efficiency of Fourier pseudospectral 
methods for such problems. 

The Kepler-Burgers mapping shows that it is also 
possible to develop mappings that give high resolution near 
the origin while maintaining a specified minimum resolu- 
tion over the whole domain. The close connection between 
this map and Burgers’ equation illustrates its potential for 
resolving shocks and frontal zones. 
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